DNA damage recognition proteins localize along heavy ion induced tracks in the cell nucleus.

نویسندگان

  • Akihisa Takahashi
  • Nobuhiro Yamakawa
  • Tadaaki Kirita
  • Katsunori Omori
  • Noriaki Ishioka
  • Yoshiya Furusawa
  • Eiichiro Mori
  • Ken Ohnishi
  • Takeo Ohnishi
چکیده

To identify the repair dynamics involved in high linear energy transfer (LET) radiation-induced DNA damage, phospho-H2AX (gammaH2AX) foci formation was analyzed after cellular exposure to iron ions (Fe-ions, 500 MeV u(-1), 200 KeV microm(-1)). The foci located at DNA damage sites were visualized using immunocytochemical methods. Since H2AX is phosphorylated at sites of radiation-induced double strand breaks (DSB), gammaH2AX foci were used to detect or illuminate tracks formed by DSB after exposure to various doses of ionizing radiation. Additional DSB-recognition proteins such as ATM phospho-serine 1981, DNA-PKcs phospho-threonine 2609, NBS1 phospho-serine 343 and CHK2 phospho-threonine 68 all co-localized with gammaH2AX at high LET radiation induced DSB. In addition, Fe-ion induced foci remained for longer times than X-radiation induced foci. These findings suggest that Fe-ion induced damage is repaired more slowly than X-radiation induced damage, possibly because Fe-ion induced damage or lesions are more complex or extensive. Antibodies for all these phosphorylated DNA DSB recognition proteins appear to be very effective for the detection and localization of DSB.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visualization of heavy ion tracks by labeling 3'-OH termini of induced DNA strand breaks.

African green monkey kidney cells, CV-1, were irradiated with Carbon ions (LET: 735 keV/µm Argon ions (LET: 3,000 keV/µm) to visualize ion tracks through the cell nucleus by labeling the 3'-OH termini result of DNA strand breaks. The 3'-OH termini of DNA were labeled with BrdU-triphosphate catalyzed by TdT. This method of TUNEL (TdT-mediated dUTP Nick End labeling) is based on the specific bind...

متن کامل

Thein vitro and in vivo Effect of Clinoptiloliteon Decreasing of Copper Ion and DNA Damage of Anodonta Cygnea

The ability of natural zeolite (Clinoptilolite) to remove copper from aqueous ecosystem was studied in real and laboratory conditions. Fresh water mussels (Anodonta Cygnea) of different sizes were Exposed to copper (150, 350, 450 µgl-1) for 10 days. Copper exposure induced DNA damage in the haemolymph cells of Anodonta of all sizes. In connection with real samples, the amount of damage and even...

متن کامل

Evaluation of DNA damage in a Her2+ cell line induced by an Auger-emitting immunoconjugate

Introduction: Auger electron based radioimmunotherapy (RIT) using 111In-DOTA-trastuzumab (111In-DOTA-antiHer2) feasibility was studied in vitro on a HER2/neu positive cell line, SkBr3. Methods:111In-DOTA-antiHer2 was prepared according to the optimized conditions followed by quality control tests including radioch...

متن کامل

Acid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs

Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...

متن کامل

Characterisation of p21 foci at heavy ion induced DNA lesions

The cyclin-dependent kinase inhibitor p21 is involved in a variety of different cellular processes, like cell cycle control, senescence and terminal differentiation. Recently, p21 was found to localize to discrete sites of DNA damage induced by heavy ions [1]. To investigate the functional significance of p21 at the DNA lesions, we designed a mammalian expression construct encoding translationa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of radiation research

دوره 49 6  شماره 

صفحات  -

تاریخ انتشار 2008